信息化 频道

客车车顶结构拓扑优化设计

 

3.1有限元模型的生成

     几何模型是有限元模型的基础。本文使用Unigraphics软件系统,根据车身骨架结构的AutoCAD二维设计图纸,建立其三维空间几何模型,用自行编制的接口程序将模型导入ANSYS。导入后的几何模型,还需要做一些必要的修改才能划分网格。为了对建成的有限元模型进行检查,将该模型在悬架装配部位的节点约束后,分别给三个坐标轴方向以一定加速度,检查梁之间的连接情况,并进行修改。最终建立的有限元模型如图2所示。模型的规模信息:关键点1288个、直线2150条、         图2 车身骨架有限元模型节点31216个、单元16044个。此模型车身骨架质量为4388.5kg,车载质量为5911.6kg,前轴承载3721.8kg,后轴承载6578.3kg。[6]

    3.2车身结构静态有限元载荷工况分析

     客车运行时车身承受的载荷很多,就其载荷性质而言,车身所受到的主要载荷为弯曲、扭转、侧向载荷和纵向载荷等几种。其中弯曲载荷主要产生于车身、车载设备、乘客和行李等的质量;扭转载荷产生于路面不平度对车身造成的非对称支承,作为对比计算,可以用静态最大可能的扭矩,即模拟一个前轮悬空的极限状态;侧向载荷主要产生于转向时的离心作用;纵向载荷产生于加速、制动时的惯性力作用。为了能比较全面地了解车身骨架在实际工况下的应力分布情况,对水平弯曲工况(空载+满载)、极限扭转工况(左、右前轮悬空)、紧急转弯工况(左、右转弯)、紧急制动工况(满载)进行了有限元仿真计算来分析车身结构强度和刚度,为进一步进行优化设计提供参考依据。[6]

    四、车顶拓扑优化

     拓扑优化是指形状优化,也称为外形优化。拓扑优化的目的是寻找承受单载荷或多载荷的物体的非常好的的材料分配方案。这种优化在拓扑优化中表现为"最大刚度"设计。与传统优化设计不同的是,拓扑优化不需要给出参数和优化变量的定义。目标函数、状态变量和设计变量都是预定义好的,用户只需给出结构的参数(材料特性、模型、载荷等)和要省去的材料百分比。[6]拓扑优化的目标函数是在满足结构约束的情况下减少结构的变形能,减少结构的变形能相当于提高结构的刚度。这个技术通过使用设计变量给每个有限元单元的伪密度得以实现。

    4.1定义拓扑优化问题

     拓扑优化分析同其它有限元分析一样,首要的是按照分析对象的基本结构建立其优化模型。由于车身骨架结构的复杂性及其承受载荷的多样性,对整个车身骨架进行拓扑优化几乎不可能实现。前述静态分析结果显示,车顶在各工况下的变形量仅次于车身骨架后围发动机布置处;模态分析表明顶棚在中高频范围内的振动幅度较大,这些都与顶棚布置相关。为降低优化问题的规模,将静态分析的结果作为车顶优化的约束条件,采用ANSYS的拓扑优化技术对车身骨架顶棚进行拓扑优化。

    4.2选择单元类型

     通过对车身骨架及其顶棚结构以及受力特点分析,根据 ANSYS 对拓扑优化设计单元性质的设定来看,综合从计算机的计算容量、拓扑优化过程实际操作的方便性及优化结果的处理考虑,选用SHELL93 [6]单元来模拟车身骨架顶棚进行分析。

0
相关文章