1 前言
汽车后桥作为整车的一个关键部件,其质量对整车的安全性能有重要的影响,因而对其进行有效的优化设计是非常必要的。本文研究的后桥在海南路试时发现存在局部强度不足的情况,该桥为引进的某型车国产化后的后桥,通过用有限元分析方法对其进行计算分析与比较,为优化该产品的设计提供依据。
2 后桥壳的有限元模型的建立
图1 焊接桥壳常见的高应力部位图
根据该车后桥结构特点,有限元分析的重点集中于桥壳分析,即将车桥主要受力简化成桥壳受力,该简化计算模型基本反映出车桥的应力集中以及局部应力分布及水平,能满足实际设计分析的要求。该车桥主要由后桥壳、加强板、平衡杆支架、板簧支座等组成,为钢板焊接式,一般其强度问题点发生的部位如图1所示。在最主要的垂直载荷工作条件下,桥内侧承受等弯矩,平直管区的名义应力响应最高,其中C、D、F点有弹簧座或过度圆弧产生应力集中效应而成为高应力区域。实际车辆上,平直管区还可能有减振器、平衡杆安装支架等,向桥壳加新的作用力或因支座对桥壳产生约束而产生应力集中,G、H点是平衡杆座板焊接位的应力集中问题, E点处在中间相对平缓的过度部位,应力也较高,A、B点的高应力对应最大侧向载荷工作情况发生。
采用SOLID45单元建模,对局部焊接部位进行细化处理,即直接对焊料建模,反映局部细节的模型,如图2、3所示,模型共划分36742个单元, 40152个节点。
图2 焊接部位处理
图3 后桥CAE模型(负荷及约束)
3 载荷与约束
3.1后桥壳所受载荷的处理
后桥所受载荷有后悬挂及后轮对后桥的作用力,本分析考虑了两种工作载荷:一种为桥负荷,取最大负荷为2.5吨(动载系数2.5),分别作用在板簧支座与桥壳联接位,如图3所示;另一种载荷为平衡杆在车身发生倾斜等情况时产生的抗力。
平衡杆的抗力有两种计算方法,一种是按理论力学平衡原理求出平衡杆抗力,另一种是通过有限元分析,即考虑平衡杆实际变形,求出平衡杆抗力,平衡杆的模型如图4所示。其中倾斜角度决定了抗力的大小,所以取2º到10º范围,得到对应的抗力的大小。如表1所示。
表1. 不同角度下平衡杆的抗力