信息化 频道

安世亚太:VNT涡轮箱喷嘴环CFD数值模拟分析

  3 CFD数值模拟

  为提高计算精确度,计算的流体介质按照发动机排气的真实成分进行计算给出,主要由氮气(76%)、氧气(7%)、水蒸汽(8%)、二氧化碳(7%)组成,忽略其它微量杂质气体。根据涡轮箱进口不同压力、温度,查表得出各组份气体物性参数值,分别计算出喷嘴环两个状态下排气定压比热、动力粘度、导热系数、密度等综合物性参数。

   

  计算采用湍流平均流Navier-Stokes方程结合湍流模型求解,湍流模型选用标准k-e模型;采用松弛因子迭代获得稳态解。

   

  采用高阶精度格式对方程进行离散求解,平均残差小于0.0001或最大迭代次数超过1000次作为收敛判别准则。

   

  通过设置交界面进行涡轮箱计算域和喷嘴环计算域数值传递。

   

  采用亚音进口、亚音出口和绝热、无滑移壁面边界,进口给定燃气流量和燃气温度,出口给定燃气压力;采用默认初始条件进行计算[6]。

   

  4 数值模拟结果分析

  VNT涡轮箱喷嘴环数值模拟所得结果分析如下:

   

  4.1 压力分布

  压力分布如图3所示:喷嘴环通道气体流动完全符合渐缩喷管流动规律。沿气体流动方向,压力降低,速度增大;喷嘴将气流的一部分压力势能转化为动能,使气流得到加速。


  
大开度压力分布 

小开度压力分布


  
大开度沿相对弦长压力分布 

小开度沿相对弦长压力分布

图3 不同开度压力分布

  喷嘴环叶片前缘附近,大开度时,喷嘴环流通面积较大,具有相当厚度的前缘对气流阻挡明显,使气流在此处滞止,使得相对压力较高,即喷嘴环叶片前缘逆流部分压力比周围压力要高;而小开度时,流通面积较小,气流在近似平行的两平板间流通,前缘对其流动几乎不存在影响。

  喷嘴环尾缘附近,由于叶片出口较薄,虽经处理仍为近似尖端,叶背和叶盆气流在此处交汇,相互干扰形成损失,从而使该处减速增压。

   

   4.2 温度分布

  温度分布如图4所示:自入口至喷嘴环出口,温度逐渐降低,温度降低引起气体焓的降低,该部分焓降用来转变为气流宏观动能,达到加速目的。


  
大开度温度分布 

小开度温度分布

图4 不同开度温度分布

  与压力分布相似,大开度时,叶片前缘也存在局部高温区,这是由于气流在前缘发生滞止,气流动能转化为内能,引起局部温度的升高;小开度流道通畅,未有该现象发生。而在尾缘由于气流撞击损失引起减速增温。

0
相关文章