【IT168信息化】
CRM中的数据挖掘就是利用数据挖掘理论和技术创建描述和预测客户行为的模型,优化CRM流程,实现企业有效的客户关系管理。具体来说,数据挖掘在电子商务CRM中的应用主要体现在以下几方面:
1.客户价值分析。通过分析客户对企业业务所构成的贡献,并结合投入产出进行分析,计算客户对企业的价值度,然后根据价值度的大小,用分类或聚类的方法来划分客户群,以便对客户实施有差异的服务。
2.产品客户价值分析。分析客户对某种产品业务量的贡献,使用的方法与客户价值分析基本相同。通过对产品客户价值分析,不仅有利于该产品的经营管理者有区别地做好客户服务,而且可以为该产品的营销提供相对准确的目标客户群。
3.客户保持。采用聚类(分类)和关联分析技术,可将客户群分为5类:高价值稳定的客户群、高价值易流失的客户群、低价值稳定的客户群、低价值易流失的客户群、没有价值的客户群。
CRM中数据挖掘系统结构
存系统结构中,底层为数据源,包括联系历史、交易历史、客户数据库、产品数据库及其他外部数据。通过ETL工具提取数据形成数据仓库和数据集市,以形成面向全局的数据视图,从而形成整个系统的数据基础;在此基础上,通过OLAP和OLAM服务器支持数据分析处理,包括查询/报表、OLAP/EIS分析和数据挖掘分析;将分析结果用于操作型CRM和客户互动渠道以实现企业客户关系管理中的商业智能和决策支持。